Final exam
Electronics \& Signal processing
10-04-2018

Prof. Dr. G. Palasantzas
Grade of written exam:
Mark is the cummulative points scored for all problems
Total maximum score : 10

Problem 1 (1.5 points)

Consider the circuit: \rightarrow

Derive the corresponding Thévenin equivalent and calculate:
(a: 1 point) Thevenin voltage $\mathrm{V}_{\text {Th }}$
(b: $\mathbf{0 . 5}$ points) Thevenin resistance R_{Th}

Replace (z) Tares with Thieving Then you get

subsutation gives

Problem 2 (2.5 points)

(a: 1 point) Consider the negative feedback circuit shown below with an ideal opamp so that $\mathrm{V}+-\mathrm{V}-=0$ (assume for the opamp infinite input and zero output resistances)..

(b: $\mathbf{1 . 5}$ points) Consider the negative feedback circuit shown below with an opamp of finite forward gain A so that $\mathrm{Vo}=\mathrm{A}(\mathrm{V}+-$ V -) (assume for the opamp infinite input and zero output resistances).

Solution

(a) Consider the K-law for currents

$\mathrm{R}=\mathrm{R} 1 / /(\mathrm{R} 3+\mathrm{R} 4)$
(Vi-Vc)/R2=[(Vc-Vo)/R] (1)
(Vc-0)/R3=(0-Vo)/R4 (2)
From (2) $\mathrm{Vc}=-\mathrm{Vo}(\mathrm{R} 3 / \mathrm{R} 4)$ and substitution in (1) gives
$(\mathrm{Vi} / \mathrm{R} 2)+\mathrm{Vo}(\mathrm{R} 3 / \mathrm{R} 4 \mathrm{R} 2)=-\mathrm{Vo}(1+\mathrm{R} 3 / \mathrm{R} 4) / \mathrm{R}$
$\operatorname{Vo}\{(\mathrm{R} 3 / \mathrm{R} 4 \mathrm{R} 2)+(1+\mathrm{R} 3 / \mathrm{R} 4) / \mathrm{R}\}=-\mathrm{Vi} / \mathrm{R} 2$
Vo $=-\mathrm{Vi} /\{(\mathrm{R} 3 / \mathrm{R} 4)+(1+\mathrm{R} 3 / \mathrm{R} 4) \mathrm{R} 2 / \mathrm{R}\}$
(b)

$$
\begin{align*}
& V_{-}=V_{0} \frac{R_{1}}{R_{1}+R_{2}} \text { (1) } 0.5 \mathrm{p} \\
& I_{0}=I_{3}+I_{6} \tag{2}\\
& \|\quad\| \quad \| \\
& \frac{V_{0}-V_{t}}{R_{5}} \quad \frac{V_{t}-V_{5}}{R_{3}} \quad \frac{V_{i}-0}{R_{6}} \\
& \text { (2) } \Rightarrow \quad \frac{V_{0}-V_{t}}{R_{5}}=\frac{V_{+}-V_{s}}{R_{3}}+\frac{V_{4}-0}{R_{6}} \Rightarrow P \\
& \Rightarrow \frac{V_{0}}{R_{3}}+\frac{V_{5}}{R_{3}}=V_{+}(\underbrace{\frac{1}{R_{5}}+\frac{1}{R_{3}}+\frac{1}{R_{6}}}_{1 / \tilde{R}})= \\
& \Rightarrow V_{t}=V_{0} \frac{\tilde{R}}{R_{s}}+V_{S} \frac{\widetilde{R}}{R_{3}} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \frac{V_{0}}{A}=V_{+}-V_{-} \\
& \frac{V_{0}}{A}=V_{0} \frac{\tilde{R}}{R_{5}}+V_{s} \frac{\tilde{R}}{R_{3}}-V_{0} \frac{R_{1}}{R_{1}+R_{2}} \\
& V_{0}\left(\frac{1}{A}-\frac{\tilde{R}}{R_{5}}+\frac{R_{1}}{R_{1}+R_{2}}\right)=V_{5} \frac{\tilde{R}}{R_{3}}=p \\
& V_{0}=V_{5} \frac{\tilde{R}}{R_{3}}\left(\left(\frac{1}{A}-\frac{\tilde{R_{2}}}{R_{5}}+\frac{R_{1}}{R_{1}+R_{2}}\right)\right.
\end{aligned}
$$

Problem 3 (1.5 points)

Consider the circuit shown below. The diode is ideal with forward conduction voltage Vc_{c} (assume for the applied potential $\mathrm{V}>0$).

(a: 1 point) Calculate the current via the resistor R_{3}
(b: 0.5 points) Calculate the current through the diode when it conducts current.

Solution

(a) In absence of the diode the volage difference $\mathrm{V} 12=\mathrm{V} 1-\mathrm{V} 2=\mathrm{V}(\mathrm{R} 2 / \mathrm{R})$ with $\mathrm{R}=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$

Case 1: If V12 \geq Vc then the diode conducts
$(\mathrm{V}-\mathrm{V} 1) / \mathrm{R} 1=\mathrm{V} 2 / \mathrm{R} 3, \mathrm{~V} 1-\mathrm{V} 2=\mathrm{Vc}$ or $\mathrm{V} 1=\mathrm{V} 2+\mathrm{Vc}$
$(\mathrm{V}-\mathrm{Vc}) / \mathrm{R} 1=\mathrm{V} 2 /(\mathrm{R} 1 / / \mathrm{R} 3)$ thus
$\mathrm{V} 2=(\mathrm{V}-\mathrm{Vc})[(\mathrm{R} 1 / / \mathrm{R} 3) / \mathrm{R} 1]$ so we obtain

$$
\begin{aligned}
\mathrm{I} 3=\mathrm{V} 2 / \mathrm{R} 3= & (\mathrm{V}-\mathrm{Vc})[(\mathrm{R} 1 / / \mathrm{R} 3) / \mathrm{R} 3 \mathrm{R} 1] \text { or } \\
& \underline{\mathrm{I} 3=(\mathrm{V}-\mathrm{Vc}) /(\mathrm{R} 3+\mathrm{R} 1)}
\end{aligned}
$$

Case 2: If $\mathrm{V} 12<\mathrm{Vc}$ then the diode does not Conduct so that we have $\mathrm{I} 3=\mathrm{V} / \mathrm{R}$
(b) When diode conducts current ID (a: case 1) $\mathrm{ID}+(\mathrm{Vc} / \mathrm{R} 2)=\mathrm{I} 3$ thus we have
$\mathrm{ID}=(\mathrm{V}-\mathrm{Vc}) /(\mathrm{R} 3+\mathrm{R} 1)-(\mathrm{Vc} / \mathrm{R} 2)$

Problem 4 (1.5 points)

(a: 0.5 point) -The Nyquist diagrams below represent two circuits. Determine the number of low-frequency and high-frequency cutoffs and indicate which system is stable

(b:1 point) Consider the opamp to have has infinite input and zero output resistance

Vcc=15 V, Vee=-15 V

Assume $\mathrm{R} 1=6 \mathrm{~K} \Omega, \mathrm{R} 2=30 \mathrm{~K} \Omega$, and input potential $\mathrm{Vi}=\mathrm{Voi}$ $\sin (\omega \mathrm{t})$ with Voi=5 V
Draw the output potential Vu and justify briefly your answer
(a)

3 high cut-offs

- I low cut-off (a) cinstable

1 high cut-off
3 low cut-offs (b) stable
(b) Positive feedback \rightarrow oscillation between -15 and +15 V

$$
\begin{aligned}
& \mathrm{R} 1=6 \mathrm{~K} \\
& \mathrm{R} 2=30 \\
& \mathrm{R} 1 / \mathrm{R} 2=3 / 5
\end{aligned}
$$

$$
V_{+}=V_{i} \frac{R_{2}}{R_{1}+R_{2}}+V_{0} \frac{R_{2}}{R_{1}+R_{2}}
$$

$$
\rightarrow V_{i}=-V_{0} \frac{D_{2}}{D_{2}}=\mp 3 V
$$

Problem 5 (1.5 points)

Design a synchronous counter (using J-K flip flops) that counts through the states $0,4,2,1,5,3$.

J	K	Q_{n}
0	0	Q_{n-1}
0	1	0
1	0	1
1	1	$\overline{Q_{n-1}}$

*: don't care

Solution

5

$J_{3}=\overline{Q_{2}} \quad k_{3}=k_{2}=1 \quad J_{2}=Q_{3} \quad J_{1}=k_{1}=Q_{2}$

Cher

Problem 6 (1.5 points)

Consider a FET amplifier as it is shown bellow:

Calculate the amplification ratio
v_{o} / v_{i}

Consider as known for the FET the transconductance g_{m}, and the differential resistance $r d$ when the FET operates at saturation.
(2-method: small signal cicuit) This is for normal cookies!

Replace in all shown bellow: RD with RD//RL. This is because in this design RD_{D} parallel with RL

$$
\begin{aligned}
& g_{m} v_{g s}+\left(v_{o}-v_{s}\right) / r_{d}-v_{s} / R_{s}=0 \\
& \begin{array}{l}
\left(v_{o} / R_{D}\right)+\left(v_{s} / R_{s}\right)=0 \\
v_{g s}=v_{g}-v_{s} \\
\quad \Downarrow \\
v_{g}=v_{i} \\
\quad \text { Gain: } v_{o} / v_{i}=-g_{m} R_{D} /\left[1+g_{m} R_{s}+\left(R_{s}+R_{D}\right) / r_{d}\right]
\end{array}, \quad \text { (E) } \\
& \quad, ~
\end{aligned}
$$

Replace in all shown bellow: RD with $\mathrm{RD} / / \mathrm{RL}$. This is because in this design RD parallel with RL^{L}

Solution
(2-method: first priciples analysis) This is only for tough cookies: so you do it or you do not do it!

$$
\begin{aligned}
& U_{g} \equiv U_{i} \\
& U_{c} \equiv U_{d} \\
& i d=g_{m}\left(U_{g}-U_{s}\right)+\frac{U_{d}-U_{s}}{r_{d}} \\
& \tilde{I_{D}}=I_{D}+I_{L} \quad(1)
\end{aligned}
$$

$$
\begin{aligned}
& V_{0}=V_{D D}-\tilde{I}_{D} \cdot R_{D}=0 \text { take a variation } \Rightarrow \delta \tilde{I}_{D}=i_{d}+i L \\
& \delta V_{0}=U_{0}=\delta V_{0}^{0}-\delta \tilde{I}_{D} \Rightarrow R_{D} \\
& U_{0}=-\left(i d+i_{L}\right) R_{D}(2) \\
& V_{0}=I_{L} \cdot R_{L}=\delta V_{0}=U_{0}=R_{L}=p \\
& U_{0}=i_{L} \cdot R_{L}=D \quad i_{L}=U_{0} / R_{L}(3) \\
& (2) f(3)=P U_{0}=-i d R_{D}-U_{0} \frac{R_{D}}{R_{L}}=P \\
& =U_{0}\left[2+\frac{R_{D}}{\left.R_{L}\right]}=-i d R_{D}(4)\right. \\
& \text { need to eliminate in id the }
\end{aligned}
$$

we still need to eliminate in id the potential US
(1) $=\underset{\sim}{r} \frac{\overbrace{V_{D D}-V_{0}}^{I_{D}}}{R D_{S}}=\frac{\overbrace{V_{s}-0}^{I_{S}}}{U_{0}}+\frac{\overbrace{V_{0}-0}^{R L}}{I L}$, tate or variation

$$
\frac{U_{S}}{R_{S}}=-\frac{\partial V_{0}}{R_{D}}=\frac{\partial V}{R_{S}}\left[\frac{1}{R_{0}}+\frac{1}{R_{i}}\right]=D \quad U_{S}=-U_{0} \frac{R S}{R_{D L}}, R_{D}=R_{D} \| R
$$

substitute in (4) from (5) the US and replace alse $U_{g}=V_{i}, U_{d}=v_{0}$

$$
\begin{aligned}
& U_{0}\left[1+\frac{R_{p}}{R_{i}}\right]=-\left[g_{m}\left(U_{i}+U_{0} \frac{R_{S}}{R_{D L}}\right)+U_{0} \frac{\left.1+\frac{R_{S}}{R_{D L}}\right] R_{D}}{r_{d}}\right. \\
& U_{0}\left[\frac{1}{R_{D}}+\frac{1}{R_{i}}\right]=-g_{m} V_{i}-g_{m} V_{0} \frac{R_{S}}{R_{D L}}=U_{0} \frac{R_{D L}+R_{S}}{V_{d} R_{D L}} \\
& \frac{U_{0}}{R_{D L}} \neq g_{m} U_{0} \frac{R_{S}}{R_{D L}+V_{0} \frac{R_{D L}+R S}{r_{d} R_{D L}}=-g_{m} V_{i}=\phi} \\
& U_{0}\left[1+g_{m} R+\frac{R_{D L}+R_{S}^{2}}{r_{d}}\right] \frac{1}{R_{D L}}=-g_{m} V_{i}=P \\
& \frac{U_{0}}{U_{i}}=-\frac{R_{D L}}{V_{m}+\frac{R_{D L}+R S}{V_{d}}}
\end{aligned}
$$

Although this looks complicated, this is what is happening in reality!
you can extend this approach beyond first order perturbation theorya limitation for method -1.

